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Abstract—This paper introduces a novel classification for
Autonomous Mobile Robots (AMRs), into three phases and
five steps, focusing on autonomous collision-free navigation.
Additionally, it presents the main methods and widely accepted
technologies for each phase of the proposed classification. The
purpose of this classification is to facilitate understanding and
establish connections between the independent input variables
of the system (hardware, software) and autonomous navigation.
By analyzing well-established technologies in terms of sensors
and methods used for autonomous navigation, this paper aims to
provide a foundation of knowledge that can be applied in future
projects of mobile robots.
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I. INTRODUCTION

Autonomous Mobile Robots (AMRs) are becoming increas-
ingly essential in various sectors. They assist humans in per-
forming complex, hazardous, or repetitive tasks. Initially cre-
ated to improve productivity and safety in industrial settings,
their scope has significantly broadened. From initially focusing
on path planning for industrial manipulators [1], AMRs now
use advanced algorithms to navigate without collisions. This
expansion has allowed them to operate in diverse and dynamic
environments beyond just industrial settings [2], [3].

Despite considerable advancements, existing navigational
strategies for Autonomous Mobile Robots (AMRs) often
remain focused on specific domains: terrestrial, aerial, and
aquatic. These strategies typically adopt layered approaches
from perception to control, each tailored to distinct opera-
tional environments such as industrial settings [4], uneven
terrains [5], [6], and underwater exploration [7], [8]. All these
applications suggest a lack of a unified framework that can
seamlessly be integrated across all domains, a gap this paper
aims to address. By adopting modular packages, the proposed
classification enhances the reusability and interoperability of
components, facilitating easier integration across all domains
of autonomous navigation [9], [10].

This paper introduces a new, comprehensive classification
system aimed at streamlining the various aspects of au-
tonomous navigation. The system acts as a fundamental frame-
work, organizing the intricate relationships between phases,
modules, and layers. It improves the comprehension and
execution of autonomous navigation strategies, offering clear

insights, and ultimately offering a complete set of tools for
practitioners to choose the best solution for a wide range of
operational scenarios.

The paper is organized as follows: Section II presents
the methodology and the process undertaken to develop our
classification and review of components and technologies.
Section III outlines the unified classification. Section IV dis-
cusses technological integrations and their applicability within
various domains. Section V explores potential future directions
and innovations, and Section VI concludes with key findings
and implications for future research.

II. METHODOLOGY FOR LITERATURE REVIEW

This study applied a systematic literature review approach
to summarize the existing classifications and technologies in
the field of autonomous navigation. In parallel with the ana-
lytical rigor demonstrated by [11] in the autonomous vehicle
domain. We aim to systematically identify and categorize
significant contributions across the spectrum of autonomous
mobile robots.

The objectives were to identify key classifications of au-
tonomous navigation and analyze the integration of hardware,
software, and the robot-environment dynamic.

The research criteria focused on:

• Peer-reviewed papers that provided foundational insights
and demonstrated long-term impact in the field.

• Clear frameworks for autonomous navigation, aiming to
bridge foundational theories with contemporary advance-
ments.

• Practical applications of technologies with significant
developments in autonomous navigation.

Searches were conducted across major databases such
as IEEE Xplore, ScienceDirect, Web of Knowledge, and
SpringerLink using keywords like ”autonomous navigation,”
”robot classification,” and ”obstacle avoidance.” This strategic
approach facilitated the inclusion of seminal, consolidated, and
cutting-edge contributions.

This literature review allows to propose a novel classifi-
cation intended to bridge existing gaps and facilitate future
research in the field of autonomous navigation.



III. A UNIFIED CLASSIFICATION FOR DIVERSE
AUTONOMOUS NAVIGATION APPLICATIONS

This study has synthesized techniques, methodologies, and
technologies for autonomous navigation, focusing on the dy-
namic interaction between hardware, software, and the robot
environment. Based on this synthesis, we propose a unique
classification system comprising three layers and five inter-
connected phases for autonomous navigation. The details of
this classification system can be found on Figure 1.

Fig. 1. Layers and phases of autonomous navigation.

This classification interconnects the layers and phases as
follows:

1) Layer 1 - Perception
a) Phase I: Environment Perception, Self Location,

Data Processing, and Mapping.
2) Layer 2 - Cognition

a) Phase II: Path Planning, including Graph Construc-
tion and Graph Search.

b) Phase III Obstacle Avoidance and Trap landscape.
3) Layer 3 - Operation

a) Phase IV Motion control,
b) Phase V Path Execution

The phases are not isolated but interconnected, covering the
perception, cognition, and operation layers of mobile robotics.
For instance, in the perception layer, mapping is integrated
with data processing to generate a high-level environment
representation, which is then used in the cognition layer for
path planning and obstacle avoidance. This pre-map is then
refined in the cognition layer to incorporate detailed terrain
characteristics and navigability information. In the cognition
layer, adaptive behavior is facilitated by integrating a Graph
Search Algorithm with a Collision Avoidance System (CAS).
This integration optimizes path planning to work in harmony
with motion control, ultimately leading to the execution of a
seamless trajectory.

A. Phase I Environment Perception, Self Location, and Data
Processing.

To initiate autonomous navigation, the robot must recognize
its surrounding environment. This involves using different

sensors to collect data, which is then processed to create
an initial pre-map. Mapping algorithms like occupancy grid
mapping [12], SLAM [2], and topological mapping generate
this high-level representation of the environment. The pre-map
distinguishes navigable and non-navigable areas and, plays
a crucial role in subsequent stages, enabling the robot to
determine its current location and plan a path to reach its
destination.

Since autonomous robots rely on multiple sensors to per-
ceive their environment, it is important to use filtering tech-
niques to merge and refine collected data from these sensors.

Table I shows well-established sensors, while table II shows
the most common filters used for data acquisition in environ-
ment perception, self-location, data processing, and mapping.

TABLE I
PHASE I - WELL-ESTABLISHED SENSORS.

Sensors Reference
Geo-referencing Systems
Inertial Navigation System (INS): IMU, Gyroscope,
Compass, Altimeter

[2], [13]

Attitude and Heading Reference System (AHRS):
MEMS Gyroscopes, Accelerometers, Magnetometers.

[14], [15]

Self Location Apparatus (for Dead Reckoning estimation)
Odometer, Encoder [16]–[20]
Optical Encoder [21]
Ultrasonic Sensor [22]

Eletromagnetic Waves Based Devices
Radar [14], [15], [23]
Ground Penetrating Radar (GPR) [13], [14],

[24], [25]
Global Positioning System (GPS) GPS and/or DGPS [10], [13],

[15], [16], [21],
[23], [26]

Cooperative Location Sharing Devices
Automatic dependent surveillance-broadcast (ADS-B),
Zigbee, Wireless.

[16], [19]

PetriNet Model [21]
Ground beacons based Position Locators Apparatus

Radio Frequency Identification (RFID) [27], [28]
Bluetooth wireless [18]

Laser Rangefinders (light waves propagation)
LiDAR [4], [13]–[17],

[19], [21], [23],
[26], [29], [30]

Infrared Sensor [21], [31]
Camera Visual Sensors

Kinect (Depth), RGB Camera [4], [13], [15],
[16], [18], [23],
[26], [30], [32],
[33] [29]

TABLE II
PHASE I - COMMON FILTERS.

Filters Reference
Multi Sensor Fusion based Filters

Kalman Filter [16], [23]
Extended Kalman Filter (EKF) [4], [29]

Vision System Filters
High Dynamic Range (HDR) Algorithms [33]
Gaussian-based filters [9], [34]
Bayesian-based filters [22], [28]

This paper does not explore sensor data processing libraries
and localization methods. However, it is important to men-



tion that established tools such as YOLO and OpenCV are
widely used for detection and localization in the robotics
Perception layer [35]. Visual SLAM algorithms [36], [37] and
localization methods like Iterative Closest Point (ICP) [5] and
Normal Distributions Transform (NDT) [35] scan matching are
also crucial in this layer. Segmentation techniques, utilizing
Gaussian-based models [34], further, enhance localization and
visual navigation by accurately classifying navigable paths and
reducing spatial requirements for map storage.

B. Phase IIA - Path Planning: Graph Construction

Once the perception processing unit in the perception layer
extracts meaningful data and creates an initial pre-map using
sensor data, the cognition layer refines it. Techniques like
surfel-based mapping [30], Delaunay triangulation, and visi-
bility constraints refine the map into a dense 3D representation
[37], ensuring accuracy and navigability. This detailed map-
ping allows the cognition layer to plan precise paths. Table
III presents usual map-building techniques for autonomous
navigation.”

TABLE III
PHASE IIA PATH PLANNING: GRAPH CONSTRUCTION

Method Reference
Graph Search Maps

Voronoi Diagram [38], [39]
Exact Cell Decomposition [9], [39]
Height Segmented Map [40]
Surfel-Based Map [30]
Approximate Cell Decompositon [13], [14], [17], [23], [39]
Lattice Graph [41]–[44]

Potential Field Maps
Extended Potential Field Approach [39], [45], [46]

Others Methods of Map Building
Genetic Algorithm (GA) [16], [39]
CNN Feature Map [47]
Spatio-Temporal Voxel Layer (STVL) [4]
Dense 3D Mapping [5], [6], [37]

As shown in Table III, the Graph Search technique is
frequently applied in AMRs, particularly within structured
environments like indoor settings. This method effectively
utilizes predefined grid or mesh maps for precise navigation.

C. Phase IIB - Path Planning: Graph Search Algorithms

Once the robot knows its position, environment features,
and target, it starts path planning. Roboticists focus on two
main parameters in this phase, as noted in [48]:

• completeness: The ability to find a solution within a finite
time.

• optimality: The ability to compute the most efficient path
considering time, energy, or distance. Various strategies
for achieving these goals are extensively discussed [39].

Table IV presents well-established path-planning algorithms
that have been applied in recent works on autonomous navi-
gation.

For path planning, autonomous vehicles mainly use the A*
algorithm and its variants. Traditional methods like BFS and

TABLE IV
PHASE IIB PATH PLANNING: GRAPH SEARCH ALGORITHMS

Trajectory Generation Reference
Deterministic Graph Search

Breadth-First Search (BFS) [9], [35], [49]
Depth-First Search (DFS) [9]
Dijkstra’s Algorithm [35], [50], [51]
A* Algorithm [14], [35], [38], [40]
D*Algorithm [17], [43]
Smac Planner [52]

Randomized Graph Search
Rapidly Exploring Random Tree (RRT) [5], [35], [53]
Spline Sample RRT* [26]
Probabilistic Roadmap [5], [18]
OMPL and SBO Planners [5]

Derived Algorithms from the previous graph search methods
Potential Field based Algorithms [13], [54], [55]
Artificial Potential Field (APF) [19], [56]
Spline Path Planning [29]
Fuzzy Heuristic Search [7], [31]
Firefly Algorithm (FA) [21]
High Autonomous Driving (HAD) Algorithms [57]
Smoothed A* Algorithm [58]

DFS are less preferred due to their inefficiency in optimiz-
ing paths. Instead, roboticists develop customized heuristic
methods that balance path optimality and computational costs,
addressing processing power and decision time constraints
[59].

D. Phase III: Obstacle Avoidance and Trap Landscapes

During autonomous operations, mobile robots must navigate
around obstacles. If not programmed in the initial phases,
collision avoidance systems (CAS) become crucial. These
systems are adapted to the robot’s operational environment and
kinodynamics, ensuring safe maneuverability. Table V details
established CAS algorithms, reflecting their varied response
times, safety distances, and specific functionalities.

Collision Avoidance Systems (CAS) play a vital role in
ensuring the safe and effective operation of mobile robots in
dynamic environments. By integrating these systems, robots
are equipped to dynamically navigate through complex ter-
rains, thereby enhancing their reliability and operational scope
for real-world applications.

E. Phase IV: Motion Control And Robot Relocation

To control the movement, speed, position, and orientation
of the AMR, various controllers are integrated into the robot,
addressing both hardware and software requirements. Vehicles
face unique constraints and require specific accuracy and
response times due to differing maneuverability capabilities
and variable environments. A range of controllers have been
developed to meet these needs, as shown in Table VI.

From Table VI, it is evident that complex vehicle dynamics
and rapidly changing environments necessitate the use of
multiple controller types. For example, [53] and [79] combined
nonlinear controllers with PID controllers to enhance steering
and speed regulation. Modern approaches increasingly incor-
porate nonlinear controllers to address complex differential
equations more effectively. Additionally, the use of cooperative



TABLE V
PHASE III: OBSTACLE AVOIDANCE AND TRAP LANDSCAPE, /CASS.

STRATEGIES CASs References
Traditional Algorithms

Bug Algorithms [31], [60]–[62]
Vector Field Histogram (VFH) [13], [45]
VFH+ [63]
VFH* [64]
The Bubble Band Technique [14], [26], [65]
Elastic Band Concept [66]
Curvature Velocities Techniques (CVM) [47], [67]
Dynamic Windows Approaches [23], [68]–[70]
The Schlegel Approach [71]
Nearness Diagram [17], [72], [73]

Virtual Force Field (VFF) Methods
Gradient Methods [31], [56], [74]
Bacterial Potential Field [54]

Genetic based Algorithms
Biological Approach [75]
Bioinspired Neural Network Algorithm [31], [76]

Hybrid VFF-Genetic Algorithms
Evolutionary Behaviour based on Genetic Programming [55]

Geometrical Methods
Boundary Following [31]
Collision Cone [18]
Higher Geometry Maze Routing Algorithm [49]
Fuzzy / Neurofuzzy Relational Products [77]

Anti-target Approach Laws
Cone’s Geometry-based Calculated Rule [78]

TABLE VI
PHASE IV MOTION CONTROL AND ROBOT RELOCATION

Controllers References
Control-Theory Based Controllers

Nonlinear Controllers
Time Elastic Band [4]
Nonlinear Optimal SDRE [56]
Pure Pursuit [53], [79], [80]

Linear Controllers
Lane Detection and Sliding Mode [31], [81]
PID (Pose / Velocity) [13], [14], [79]
Model Predictive Control (MPC) [6], [31]

Hybrid Controllers
PID (Pose / Velocity) [81]
Model Predictive Path Integral Control (MPPI) [82]

Behaviour Based Controllers
Machine Learning

Matlab/hardware Loop [57]
Receding Horizon (CNN) [47]

Relocation Techniques And Others Sorts of Controllers
SLAM [23]
Hybrid [55]

predictive controllers has become prevalent, optimizing robot
relocation and enhancing motion control efficiency [23].

F. Phase V: Trajectory Execution

AMRs are equipped with specialized hardware to execute
planned routes. Some adhere to predefined trajectories (offline
trajectory execution), while others use episodic planning to
dynamically integrate planning and execution using sensor
data [9]. Additionally, AMRs may include real-time replanning
modules within the operation layer, eliminating the temporal
gap between planning and execution. Behavior trees [83]
coordinate diverse planning and execution modules to man-

age dynamic conditions effectively. This approach increases
flexibility, enabling AMRs to adapt to varying environments
and operational demands. The distinction between offline and
online path planning underscores the necessity for dynamic
response capabilities in online scenarios, where unpredictable
environments pose significant computational challenges [49].
Table VII highlights commonly used methods and algorithms
for trajectory execution.

TABLE VII
PHASE V: TRAJECTORY EXECUTION.

Method/Algorithm References
Offline Planning (Dead Reckoning) [13], [25], [54], [84]
Episodic Planning (Deferred Planning) [14], [20], [55], [85]–[87]
Integrated Planning and Execution
(Real Time Replanning)

[15], [21], [26], [31], [40],
[42]–[44], [47], [53], [57], [83]

Hybrid Layers Switching [8], [50]

IV. DISCUSSION

The proposed classification of autonomous navigation and
the discussion of both well-established and recent techniques
and technologies not only contribute to academic understand-
ing but also provide a practical guide for the design and
implementation of future mobile robots. This framework also
facilitates learning about the various algorithms, components,
and sensors that compose autonomous navigation, ranging
from perception to operation.

V. TENDENCIES

Recent advancements in Autonomous Mobile Robots
(AMRs) underscore trends that enhance their operational ca-
pabilities:

• Enhanced Communication Technologies: Introduction
of 5G technology significantly improves real-time data
sharing among AMRs, crucial for industrial automation.

• Evolution of Navigation Algorithms: The adoption
of evolutionary algorithms and neural networks bolsters
real-time decision-making in AMRs.

• Artificial Intelligence in Cognition: Integration of deep
learning enhances path prediction and decision-making,
facilitating advanced cognitive functions.

• Advanced Sensor Fusion and Data Processing: En-
hanced filtering techniques and new algorithms improve
environmental perception and motion planning under
challenging conditions.

• Sensor Diversity and Data Redundancy: The use of di-
verse sensors and advanced probabilistic filters increases
data reliability, optimizing tasks like SLAM.

• Nonlinear Filtering Techniques: Nonlinear filters are
critical for accurately processing the complex dynamics
of AMRs, enhancing motion control and trajectory pre-
diction.

• Adaptability Across Environments: AMRs have ad-
vanced in operating across varied environments: terres-
trial, aerial, and aquatic, broadening their applications to
include disaster response and environmental monitoring.



These innovations highlight the dynamic evolution of AMR
technology, where flexibility and improved communication are
key drivers of enhanced robotic navigation.

VI. CONCLUSION

This paper presented a novel classification system for the
domain of autonomous mobile robots (AMRs), aiming to
refine the interconnection between diverse technologies for
autonomous navigation. By exploring various techniques (such
as methodologies, methods, and strategies) and technologies
(including sensors, tools and filters) readers can develop
deeper understanding of the different phases of autonomous
navigation and they can make informed choices of well-
established tools for designing mobile robots.
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[12] J. Esenkanova, H. O. İlhan, and S. Yavuz, “Pre-mapping system with
single laser sensor based on gmapping algorithm,” IJOEE, vol. 1, no. 2,
pp. 97–101, 2013.

[13] Y. He, C. Chen, C. Bu, and J. Han, “A polar rover for large-scale
scientific surveys: design, implementation and field test results,” Int.
J. Adv. Robot. Syst., vol. 12, no. 10, p. 145, 2015.

[14] C. Urmson, J. Anhalt, D. Bartz, M. Clark, T. Galatali, A. Gutierrez,
S. Harbaugh, J. Johnston, P. Koon, W. Messner et al., “A robust approach
to high-speed navigation for unrehearsed desert terrain,” in The 2005
DARPA Grand Challenge. Springer, 2007, pp. 45–102.

[15] S. Noh, “Decision-making framework for autonomous driving at road
intersections: Safeguarding against collision, overly conservative behav-
ior, and violation vehicles,” IEEE Trans. Ind. Electron, vol. 66, no. 4,
pp. 3275–3286, 2019.

[16] H. Li, M. Tsukada, F. Nashashibi, and M. Parent, “Multivehicle coop-
erative local mapping: A methodology based on occupancy grid map
merging,” IEEE T-ITS, vol. 15, no. 5, pp. 2089–2100, 2014.

[17] I. Iturrate, J. M. Antelis, A. Kubler, and J. Minguez, “A noninvasive
brain-actuated wheelchair based on a p300 neurophysiological protocol
and automated navigation,” IEEE Trans. Robot., vol. 25, no. 3, pp. 614–
627, 2009.

[18] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “The hybrid
reciprocal velocity obstacle,” IEEE Trans. Robot., vol. 27, no. 4, pp.
696–706, 2011.

[19] H. Li and A. V. Savkin, “An algorithm for safe navigation of mobile
robots by a sensor network in dynamic cluttered industrial environ-
ments,” Robot. Comput.-Integr. Manuf., vol. 54, pp. 65–82, 2018.

[20] A. C. Schultz and W. Adams, “Continuous localization using evidence
grids,” in Proceedings. 1998 ICRA (Cat. No. 98CH36146), vol. 4. IEEE,
1998, pp. 2833–2839.

[21] B. Patle, A. Pandey, A. Jagadeesh, and D. Parhi, “Path planning in
uncertain environment by using firefly algorithm,” Def. Technol., vol. 14,
no. 6, pp. 691–701, 2018.

[22] P. Yang, “Efficient particle filter algorithm for ultrasonic sensor-based
2d range-only simultaneous localisation and mapping application,” IET
Wireless Sensor Systems, vol. 2, no. 4, pp. 394–401, 2012.

[23] M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas,
Y. Pilat, F. Homm, W. Huber, and N. Kaempchen, “Experience, results
and lessons learned from automated driving on germany’s highways,”
IEEE T-ITS, vol. 7, no. 1, pp. 42–57, 2015.

[24] E. Trautmann, L. Ray, and J. Lever, “Development of an autonomous
robot for ground penetrating radar surveys of polar ice,” in 2009
IEEE/RSJ IROS. IEEE, 2009, pp. 1685–1690.

[25] L. Ray, A. Adolph, A. Morlock, B. Walker, M. Albert, J. H. Lever,
and J. Dibb, “Autonomous rover for polar science support and remote
sensing,” in 2014 IEEE IGARSS. IEEE, 2014, pp. 4101–4104.

[26] S. Yoon, D. Lee, J. Jung, and D. H. Shim, “Spline-based rrt using
piecewise continuous collision-checking algorithm for car-like vehicles,”
J. Intell. Robot. Syst., vol. 90, no. 3-4, pp. 537–549, 2018.

[27] W. Gueaieb and M. S. Miah, “An intelligent mobile robot navigation
technique using rfid technology,” IEEE T Instrum. Meas., vol. 57, no. 9,
pp. 1908–1917, 2008.

[28] J. Zhang, Y. Lyu, J. Patton, S. C. Periaswamy, and T. Roppel, “Bfvp:
A probabilistic uhf rfid tag localization algorithm using bayesian filter
and a variable power rfid model,” IEEE Trans. Ind. Electron., vol. 65,
no. 10, pp. 8250–8259, 2018.

[29] H. Xiao, Z. Li, C. Yang, W. Yuan, and L. Wang, “Rgb-d sensor-based
visual target detection and tracking for an intelligent wheelchair robot
in indoors environments,” IJCAS, vol. 13, no. 3, pp. 521–529, 2015.

[30] F. Atas, G. Cielniak, and L. Grimstad, “Elevation state-space: Surfel-
based navigation in uneven environments for mobile robots,” in 2022
IEEE/RSJ IROS. IEEE, 2022, pp. 5715–5721.

[31] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments: a
survey,” Robotica, vol. 33, no. 3, pp. 463–497, 2015.

[32] Z. Yan, J. Li, Y. Wu, and G. Zhang, “A real-time path planning algorithm
for auv in unknown underwater environment based on combining pso
and waypoint guidance,” Sensors, vol. 19, no. 1, p. 20, 2019.

[33] N. Paul and C. Chung, “Application of hdr algorithms to solve direct
sunlight problems when autonomous vehicles using machine vision
systems are driving into sun,” Comput Ind., vol. 98, pp. 192–196, 2018.
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